اشتقاق های لی وجردن روی جبرهای خاص

thesis
abstract

این مطالعه به منظور بررسی اشتقاق های لی وجردن روی یک خانواده از جبرهای خاص صورت گرفته است. از اینرو به بررسی اینکه تحت چه شرایطی می توان یک اشتقاق لی را به صورت حاصلجمع یک اشتقاق جمعی و یک نگاشت مرکزمقدار که جابجاگرها را به صفر می نگارد تجزیه کردو در آخر مباحثی پیرامون اشتققاق های جردن و شرایطی که تحت آن هر اشتقاق جردن یک اشتقاق است رامورد بررسی قرار داده ایم.

similar resources

اشتقاق های لی روی جبرهای خاص

در این رساله به مطالعه اشتقاق های لی روی جبرهای عملگری و جبرهای مثلثی می پردازیم. شرایطی را بررسی می کنیم که تحت آن یک اشتقاق لی روی این جبرها به شکل استاندارد ظاهر شود به عبارت دیگر، بتوان آن را به صورت مجموع یک اشتقاق جمعی و یک نگاشت مرکز مقدار که جابجاگرها را به صفر می نگارد تجزیه کرد.

15 صفحه اول

اشتقاق های جردن و پاد اشتقاق ها روی جبرهای مثلثی

فرض کنیم ? یک جبر مثلثی باشد. نگاشت دوخطی ?:?×??? دو اشتقاق نامیده می شود اگر نسبت به هر دو مولفه اش اشتقاق باشد. در این پایان نامه، مفهوم دو اشتقاق اکستریمال را معرفی می کنیم، و ثابت می کنیم که تحت برخی شرایط یک دو اشتقاق از جبر مثلثی ? ، مجموع یک دو اشتقاق اکستریمال و یک دو اشتقاق داخلی است. بررسی خواهیم کرد که تحت چه شرایطی اشتقاق های جبرهای مثلثی داخلی اند. همچنین ثابت می کنیم که هر اشتقاق...

15 صفحه اول

فشردگی اشتقاق ها روی جبرهای باناخ جابجایی

در این پایان نامه فشردگی اشتقاق ها روی جبرهای باناخ جابجایی را بررسی می کنیم‎،‎ نشان می دهیم اگر هیچ اشتقاق فشرده ازجبر باناخ جابجایی ‎aبتوی دوگان مدولش وجود نداشته باشد‎،‎ آنگاه هیچ اشتقاق فشرده از جبر باناخ جابجایی ‎aبتوی- aدو مدول متقارن وجود ندارد‎. همچنین نتایج مشابهی برای اشتقاق های ضعیف فشرده و اشتقاق های کران دار از رتبه متناهی اثبات می کنیم‎.‎

15 صفحه اول

جبرهای لی مقدماتی و a-جبرهای لی

در سراسر پایان نامه فرض می کنیم l یک جبرلی با بعد متناهی روی میدان f باشد. در ابتدا جبرهای لی مقدماتی و a-جبرها وe-جبرها تعریف و قضایایی در رابطه با انها ارائه شده است. خاصیت جالب جبرهای لی مقدماتی این است که روی هرکدام از ایده آلهایشان تجزیه می شوند. در این پایاننامه نشان خواهیم داد که هر جبر لی مقدماتی روی میدان با مشخصه صفر تقریبا جبری است. در نهایت به دسته بندی جبرهای لی ساده مقدماتی حقیق...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023